Navigation :
Manual
Input Variables
-
Atomic Orbitals
-
Calculation Modes
-
ClassicalParticles
-
DFTBPlusInterface
-
Execution
-
Hamiltonian
--
DFT+U
--
PCM
--
Poisson
--
XC
---
DensityCorrection
--- DFTULevel
--- HFSingularity
--- HFSingularityNk
--- HFSingularityNsteps
--- Interaction1D
--- Interaction1DScreening
--- KLIPhotonCOC
--- libvdwxcDebug
--- libvdwxcMode
--- libvdwxcVDWFactor
--- OEPLevel
--- OEPMixing
--- OEPMixingScheme
--- OEPRemoveElectron
--- PhotonModes
--- PhotonXCEnergyMethod
--- PhotonXCEtaC
--- PhotonXCLambShift
--- PhotonXCLambShiftOmegaCutoff
--- PhotonXCLambShiftRenormalizeMass
--- PhotonXCLDAKappa
--- SCDMforPZSIC
--- SICCorrection
--- VDW_TS_cutoff
--- VDW_TS_damping
--- VDW_TS_sr
--- VDWCorrection
--- VDWD3Functional
--- VDWSelfConsistent
--- Xalpha
--- XCFunctional
--- XCKernel
--- XCKernelLRCAlpha
--- XCPhotonFunctional
--- XCPhotonIncludeHartree
--- XCUseGaugeIndependentKED
-- AdaptivelyCompressedExchange
-- CalculateDiamagneticCurrent
-- CalculateSelfInducedMagneticField
-- CurrentDensity
-- EnablePhotons
-- EwaldAlpha
-- FilterPotentials
-- ForceTotalEnforce
-- GaugeFieldDelay
-- GaugeFieldDynamics
-- GaugeFieldPropagate
-- GaugeVectorField
-- GyromagneticRatio
-- MagneticConstrain
-- MagneticConstrainStrength
-- MaxwellCouplingMode
-- MaxwellDipoleField
-- MultipolarExpansionTerms
-- ParticleMass
-- PauliHamiltonianTerms
-- RashbaSpinOrbitCoupling
-- RelativisticCorrection
-- SOStrength
-- StaticElectricField
-- StaticMagneticField
-- StaticMagneticField2DGauge
-- TheoryLevel
-- TimeZero
-
Linear Response
-
Math
-
Maxwell
-
Mesh
-
Output
-
SCF
-
States
-
System
-
Time-Dependent
-
Utilities
-
Alphabetic Index
Tutorials
Developers
Releases
PhotonXCEnergyMethod
PhotonXCEnergyMethod
Section Hamiltonian::XC
Type integer
Default 1
There are different ways to calculate the energy,
Options :
virial :
(modified) virial approach
( E p x v i r i a l = 1 2 ∫ d r r ⋅ [ − ρ ( r ) ∇ v p x ( r ) ] )
(E_{\rm{px}}^{\rm{virial}} = \frac{1}{2}\int d\mathbf{r}\ \mathbf{r}\cdot[
-\rho(\mathbf{r})\nabla v_{\rm{px}}(\mathbf{r})])
( E p x v i r i a l = 2 1 ∫ d r r ⋅ [ − ρ ( r ) ∇ v p x ( r ) ] )
expectation_value :
expectation value w.tr.t. the wave functions (valid only for 1 electron)
E p x [ ρ ] = − ∑ α = 1 M p λ ~ α 2 2 ω ~ α 2 ⟨ ( ε ~ α ⋅ J ^ p ) Φ [ ρ ] ∣ ( ε ~ α ⋅ J ^ p ) Φ [ ρ ] ⟩
E_{\rm{px}}[\rho] = -\sum_{\alpha=1}^{M_{p}}\frac{\tilde{\lambda}_{\alpha}^{2}}{2\tilde{\omega}_{\alpha}^{2}}
\langle (\tilde{\mathbf{{\varepsilon}}}_{\alpha}\cdot\hat{\mathbf{J}}_{\rm{p}})\Phi[\rho]
| (\tilde{\mathbf{{\varepsilon}}}_{\alpha}\cdot\hat{\mathbf{J}}_{\rm{p}})\Phi[\rho] \rangle
E p x [ ρ ] = − ∑ α = 1 M p 2 ω ~ α 2 λ ~ α 2 ⟨ ( ε ~ α ⋅ J ^ p ) Φ [ ρ ] ∣ ( ε ~ α ⋅ J ^ p ) Φ [ ρ ] ⟩
This option only works for the wave function based electron-photon functionals
LDA :
energy from electron density
E p x L D A [ ρ ] = − 2 π 2 ( d + 2 ) ( 2 V d ) 2 d ∑ α = 1 M p λ ~ α 2 ω ~ α 2 ∫ d r ρ 2 + d d ( r )
E_{\rm pxLDA}[\rho] = \frac{-2\pi^{2}}{(d+2)({2V_{d}})^{\frac{2}{d}}}
\sum_{\alpha=1}^{M_{p}}\frac{\tilde{\lambda}_{\alpha}^{2}}{\tilde{\omega}_{\alpha}^{2}}
\int d\mathbf{r}\ \rho^{\frac{2+d}{d}}(\mathbf{r})
E p x L D A [ ρ ] = ( d + 2 ) ( 2 V d ) d 2 − 2 π 2 ∑ α = 1 M p ω ~ α 2 λ ~ α 2 ∫ d r ρ d 2 + d ( r )
This option only works with LDA electron-photon functionals.
Source information
electrons/xc_photons.F90 : 185
call parse_variable ( namespace , 'PhotonXCEnergyMethod' , 1 , xc_photons % energy_method )