
Octopus on HPC systems:
Parallelization and GPUs

Sebastian Ohlmann
Max Planck Computing and Data Facility, Garching

Octopus basics course, 7.9.2021

Octopus on HPC systems: parallelization and GPUs

Up to now:
Octopus
on your laptop

Octopus on HPC systems: parallelization and GPUs

Faster results
needed?
Go parallel!

©MPCDF

Octopus on HPC systems: parallelization and GPUs

Outline
● High performance computing
● Parallelization strategies in octopus
● Guidelines for efficient usage
● Using GPUs with octopus
● Tutorials

Octopus on HPC systems: parallelization and GPUs

High performance computing
● Also HPC = supercomputing
● Definition difficult: today’s smartphones better

than supercomputers from 50 years ago
● Utilize hardware to the fullest
● Parallel computing important

→ distribute computations to get faster results

Octopus on HPC systems: parallelization and GPUs

Levels of parallelism
● Hierarchy in HPC systems:

– Cluster: Many compute nodes
– Node: several sockets with CPUs, maybe some GPUs
– CPU: several cores
– GPU: many cores
– Core: vectorization, pipelining

● Best performance: exploit all levels

Octopus on HPC systems: parallelization and GPUs

Architecture of an HPC system

Node

MemorySocket

Socket

Node

MemorySocket

Socket

Node

MemorySocket

Socket

Login Node

MemorySocket

Socket

...

Storage

Network
switch

Octopus on HPC systems: parallelization and GPUs

Resource management
● Goal: maximize resource utilization
● Users submit compute jobs to a queue
● Need to specify required resources
● Scheduler assigns jobs to resources
● Scheduler starts/ends jobs
● Widely used: slurm → learn more in tutorial

Octopus on HPC systems: parallelization and GPUs

Parallelization in Octopus
● Central object: Kohn-Sham wavefunctions
● Several dimensions:

– K points
– State index
– Real-space grid index

● Idea:
– Distribute wavefunctions over all these dimensions
– Every process works on local part of wavefunctions
– Communication needed for synchronization

Octopus on HPC systems: parallelization and GPUs

Parallelization approach
● Distributed-memory parallelization: MPI

→ scale to multiple compute nodes
● Shared-memory parallelization: OpenMP

→ inside one node
● Vectorization → inside CPU cores
● GPUs for offloading computations from CPU

Octopus on HPC systems: parallelization and GPUs

Parallelization strategies

Vectorization

Kohn Sham states

Real space domains

OpenMP

M
P
I

CUDA

K points / Spin

CPU GPU

Octopus on HPC systems: parallelization and GPUs

Parallelization in k points/spin
● Different k points independent
● Each process handles one or several k points
● Weakest coupling

Octopus on HPC systems: parallelization and GPUs

Parallelization in states
● Each process handles a group of states
● Efficient for time propagation
● Also used for ground state, but stronger

coupling
(orthogonalization, subspace diagonalization)

Octopus on HPC systems: parallelization and GPUs

Parallelization in domains
● Each process handles points of a region in space
● Derivatives: finite differences using a stencil
● Information from neighbors needed → ghost points
● Integrals: performed locally and summed over all

domains
● Introduces more communication & stronger coupling
● Less efficient than other strategies

Octopus on HPC systems: parallelization and GPUs

Partitioning
● Uses METIS library
● Minimize load

imbalance and
communication
– Same number of

points
– Small boundary

surfaces

Octopus on HPC systems: parallelization and GPUs

Domain
parallelization

Interior Ghost layer

Interior

Ghost layer

Ghost layer

G
host layerG

ho
st

 la
ye

r

● Work on local points
● Ghost points: needed

for stencil
● Communication: for

updating them

Octopus on HPC systems: parallelization and GPUs

Too many
ghost points

Interior Ghost layer

Interior

Ghost layer

Ghost layer

G
host layerG

ho
st

 la
ye

r

● Large ratio of ghost to
inner points (> 25%)

● Communication
overhead too large

● Not enough local work
● Inefficient!

→ use less cores

Octopus on HPC systems: parallelization and GPUs

OpenMP parallelization
● Shared-memory approach: threads access the same

memory
● Octopus: loops over grid can use OpenMP
● No ghost points needed
● Similar to domain parallelization
● Number of local points needs to be large enough
● Can be efficient using up to 12 threads
● OpenMP threads should be on the same socket

Octopus on HPC systems: parallelization and GPUs

Vectorization
● Modern CPUs: several floating point operations

in one instruction
● Needed to exploit full performance
● In Octopus:

– Data structures designed to facilitate vectorization
– Hand-crafted kernels for stencil operation

Octopus on HPC systems: parallelization and GPUs

Controlling parallelization
● Input options:

– ParKPoints
– ParStates
– ParDomains
– ParOther

(e.g. for Casida)

● Control number of
processors for each strategy

● Can also be
– auto
– no

● Default:
– TD: auto for all
– GS: auto for all except

ParStates

Octopus on HPC systems: parallelization and GPUs

Choosing number of processors
● Automatic setting not always best option
● Setting by hand often yields better results
● Product of processors in each direction

= total number of processors
● If OpenMP used: product of processors x

OpenMP threads = total number of processors

Octopus on HPC systems: parallelization and GPUs

Parallelization example I
● Large molecule (finite system, no k points)

– 268 states
– 260000 grid points

● Run on cobra (40 cores per node)
● 1 node: 40 cores = 23 x 5

– ParStates=40 → 7 or 6 states per process
– ParStates=20, ParDomains=2 → 13 or 14 states per process, 130000

points per process
– ParStates=20, OpenMP=2 (instead of ParDomains)
– ParStates=10, ParDomains=2, OpenMP=2

Octopus on HPC systems: parallelization and GPUs

Parallelization example II
● Small solid

– 5x5x5 = 125 k points
– 16 states
– 8000 grid points (→ too small for parallelization)

● Run on cobra (40 cores per node)
● 1 node: 40 cores = 23 x 5

– ParKPoints=10, ParStates=4 → 13 or 12 k points per process, 4 states per
process

– ParKPoints=20, ParStates=2 → 7 or 6 k points per process, 8 states per
process

● Imbalance not always avoidable

Octopus on HPC systems: parallelization and GPUs

How do I know if I run the code efficiently?

Octopus on HPC systems: parallelization and GPUs

Guidelines
● K points: min. 1 k point per process
● States: min. 4-8 states per process
● K points and states should be balanced
● States: most efficient is multiple of 4
● Domains: ratio ghost/local points <25%

Octopus on HPC systems: parallelization and GPUs

Scaling
● Expectation: using 2 processors instead of 1

→ twice as fast
● In reality: not the case!
● Problems reducing efficiency:

– Not all operations parallelized
– Overhead of parallelization scheme (communication,

bookkeeping, …)
● Analyze scaling to find efficient configuration

Octopus on HPC systems: parallelization and GPUs

Terminology
● Time on N processors: T(N)
● Speed-up: S = T(1)/T(N)
● Ideal speed-up: Sideal = N/1
● Parallel efficiency: ϵ = S/Sideal

Octopus on HPC systems: parallelization and GPUs

Amdahl’s law
● Speed-up S for serial

fraction f on N
processes:
S = 1/(f + (1-f)/N)

● Upper limit: 1/f
● For f=10% → S ≤ 10!
● Gives upper limit on

achievable speed-up

Octopus on HPC systems: parallelization and GPUs

Scaling analysis
● Goal: determine by experiments up to which point

octopus scales for certain input
● Strong scaling:

– Run octopus for 1, 2, 4, 8, 16, … cores (or nodes)
– Compute speed-up
– Compare to ideal speed-up in scaling plot (speed-up vs.

cores in log-log plot)
– Problems where curve deviates from ideal scaling
– Efficiency should be above 70%

Octopus on HPC systems: parallelization and GPUs

Why should I care?
● HPC systems: large, but finite and shared

resources
● Efficient usage: more simulations (and science)

can be done in total by all members of the group
● Inefficient usage: less simulations can be done,

longer waiting times for all members of the
group

Octopus on HPC systems: parallelization and GPUs

Octopus
on GPUs

©Nvidia

Octopus on HPC systems: parallelization and GPUs

Octopus on GPUs
● Implementation: uses CUDA
● Targets only NVIDIA GPUs at the moment
● Code needs to be compiled with CUDA support
● No special settings in input file needed
● Only efficient on HPC GPUs (need double

precision operations!)

Octopus on HPC systems: parallelization and GPUs

Features on GPUs
● Most efficient: time propagations for large

systems
● Also working: ground state → use RMMDIIS

eigensolver
● Some features do not work/are inefficient (e.g.,

spin-orbit coupling, DFT+U, hybrid functionals)

Octopus on HPC systems: parallelization and GPUs

Guidelines for efficiency
● One process per GPU on each node
● Many states: min. 16-32 states per process
● Large grids: enough points needed to saturate

GPUs
● Domain parallelization introduces

communication overhead (GPU ↔ CPU)

Octopus on HPC systems: parallelization and GPUs

How to get started
● Compile code with CUDA support
● Run on a system with NVIDIA GPUs
● At MPCDF: use octopus-gpu module
● Compare timings to CPU run
● In case of issues or inefficiencies, let the

developers know!

Octopus on HPC systems: parallelization and GPUs

Why use GPUs?
● For suitable setups, using GPUs can be 10 times

faster than on CPUs (on same number of nodes)
– Faster time to solution
– More efficient

● Large GPU resources now and in future
● Try it out!

Octopus on HPC systems: parallelization and GPUs

Tutorials

1) Using MPCDF systems
2) Slurm usage
3) Parallelization in octopus
4) Scaling
5) Octopus on GPUs

Octopus on HPC systems: parallelization and GPUs

Backup slides

Octopus on HPC systems: parallelization and GPUs

Comparison on cobra: CPU vs. GPU

> 4x

64 GPUs 2560 cores

TCO of cobra nodes:
 GPU ~ 2.8 CPU

→ cost-efficient on
GPUs!

Octopus on HPC systems: parallelization and GPUs

Scaling on GPU nodes

Octopus on HPC systems: parallelization and GPUs

● Real-space grid for FD
● Complicated shape

possible, e.g. molecules
● Cache-aware mapping to

1D array
● 1D data layout: 2 blocks

– Interior points
– Boundary/ghost points

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory
Comput. (2013), 9, 10, 4360-4373

Interior Boundary

Interior

Boundary

Boundary

B
ou

nd
ar

y B
oundary

Data layout

Octopus on HPC systems: parallelization and GPUs

Orbital 1

Mesh index

Orbital 2

...1 2 3

...1 2 3

...1 2 3

...1 2 3

Orbital 3

Orbital 4

Unpacked layout

M
es

h
in

de
x

Packed layout
Orbital index

1 1 1 1

2 2 2 2

3 3 3 3

...

Data layout II: batches
● Aggregate several

orbitals into one
batch

● Operations done
over batches

● 2 layouts:
– Unpacked
– Packed →

vectorization, GPUs

Octopus on HPC systems: parallelization and GPUs

Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions before: ● Transitions now:
CPU unpacked

CPU packed GPU packed

→ always involves transposition

CPU unpacked

CPU packed GPU packed

→ simple copy to GPU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

