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Up to now:
Octopus
on your laptop
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Faster results 
needed?
Go parallel!

©MPCDF
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Outline
● High performance computing
● Parallelization strategies in octopus
● Guidelines for efficient usage
● Using GPUs with octopus
● Tutorials
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High performance computing
● Also HPC = supercomputing
● Definition difficult: today’s smartphones better 

than supercomputers from 50 years ago
● Utilize hardware to the fullest
● Parallel computing important

→ distribute computations to get faster results
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Levels of parallelism
● Hierarchy in HPC systems:

– Cluster: Many compute nodes
– Node: several sockets with CPUs, maybe some GPUs
– CPU: several cores
– GPU: many cores
– Core: vectorization, pipelining

● Best performance: exploit all levels
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Architecture of an HPC system
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Resource management
● Goal: maximize resource utilization
● Users submit compute jobs to a queue
● Need to specify required resources
● Scheduler assigns jobs to resources
● Scheduler starts/ends jobs
● Widely used: slurm → learn more in tutorial
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Parallelization in Octopus
● Central object: Kohn-Sham wavefunctions
● Several dimensions:

– K points
– State index
– Real-space grid index

● Idea:
– Distribute wavefunctions over all these dimensions
– Every process works on local part of wavefunctions
– Communication needed for synchronization
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Parallelization approach
● Distributed-memory parallelization: MPI

→ scale to multiple compute nodes
● Shared-memory parallelization: OpenMP

→ inside one node
● Vectorization → inside CPU cores
● GPUs for offloading computations from CPU
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Parallelization strategies
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Parallelization in k points/spin
● Different k points independent
● Each process handles one or several k points
● Weakest coupling
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Parallelization in states
● Each process handles a group of states
● Efficient for time propagation
● Also used for ground state, but stronger 

coupling
(orthogonalization, subspace diagonalization)
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Parallelization in domains
● Each process handles points of a region in space
● Derivatives: finite differences using a stencil
● Information from neighbors needed → ghost points
● Integrals: performed locally and summed over all 

domains
● Introduces more communication & stronger coupling
● Less efficient than other strategies
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Partitioning
● Uses METIS library
● Minimize load 

imbalance and 
communication
– Same number of 

points
– Small boundary 

surfaces
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Domain
parallelization
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● Work on local points
● Ghost points: needed 

for stencil
● Communication: for 

updating them
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Too many
ghost points

Interior Ghost layer
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● Large ratio of ghost to 
inner points (> 25%)

● Communication 
overhead too large

● Not enough local work
● Inefficient!

→ use less cores
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OpenMP parallelization
● Shared-memory approach: threads access the same 

memory
● Octopus: loops over grid can use OpenMP
● No ghost points needed
● Similar to domain parallelization
● Number of local points needs to be large enough
● Can be efficient using up to 12 threads
● OpenMP threads should be on the same socket
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Vectorization
● Modern CPUs: several floating point operations 

in one instruction
● Needed to exploit full performance
● In Octopus:

– Data structures designed to facilitate vectorization
– Hand-crafted kernels for stencil operation
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Controlling parallelization
● Input options:

– ParKPoints
– ParStates
– ParDomains
– ParOther

(e.g. for Casida)

● Control number of 
processors for each strategy

● Can also be
– auto
– no

● Default:
– TD: auto for all
– GS: auto for all except 

ParStates
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Choosing number of processors
● Automatic setting not always best option
● Setting by hand often yields better results
● Product of processors in each direction

= total number of processors
● If OpenMP used: product of processors x 

OpenMP threads = total number of processors
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Parallelization example I
● Large molecule (finite system, no k points)

– 268 states
– 260000 grid points

● Run on cobra (40 cores per node)
● 1 node: 40 cores = 23 x 5

– ParStates=40 → 7 or 6 states per process
– ParStates=20, ParDomains=2 → 13 or 14 states per process, 130000 

points per process
– ParStates=20, OpenMP=2 (instead of ParDomains)
– ParStates=10, ParDomains=2, OpenMP=2
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Parallelization example II
● Small solid

– 5x5x5 = 125 k points
– 16 states
– 8000 grid points (→ too small for parallelization)

● Run on cobra (40 cores per node)
● 1 node: 40 cores = 23 x 5

– ParKPoints=10, ParStates=4 → 13 or 12 k points per process, 4 states per 
process

– ParKPoints=20, ParStates=2 → 7 or 6 k points per process, 8 states per 
process

● Imbalance not always avoidable
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How do I know if I run the code efficiently?
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Guidelines
● K points: min. 1 k point per process
● States: min. 4-8 states per process
● K points and states should be balanced
● States: most efficient is multiple of 4
● Domains: ratio ghost/local points <25%
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Scaling
● Expectation: using 2 processors instead of 1

→ twice as fast
● In reality: not the case!
● Problems reducing efficiency:

– Not all operations parallelized
– Overhead of parallelization scheme (communication, 

bookkeeping, …)
● Analyze scaling to find efficient configuration
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Terminology
● Time on N processors: T(N)
● Speed-up: S = T(1)/T(N)
● Ideal speed-up: Sideal = N/1
● Parallel efficiency: ϵ = S/Sideal
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Amdahl’s law
● Speed-up S for serial 

fraction f on N 
processes:
S = 1/(f + (1-f)/N)

● Upper limit: 1/f
● For f=10% → S ≤ 10!
● Gives upper limit on 

achievable speed-up
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Scaling analysis
● Goal: determine by experiments up to which point 

octopus scales for certain input
● Strong scaling:

– Run octopus for 1, 2, 4, 8, 16, … cores (or nodes)
– Compute speed-up
– Compare to ideal speed-up in scaling plot (speed-up vs. 

cores in log-log plot)
– Problems where curve deviates from ideal scaling
– Efficiency should be above 70%
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Why should I care?
● HPC systems: large, but finite and shared 

resources
● Efficient usage: more simulations (and science) 

can be done in total by all members of the group
● Inefficient usage: less simulations can be done, 

longer waiting times for all members of the 
group
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Octopus
on GPUs

©Nvidia
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Octopus on GPUs
● Implementation: uses CUDA
● Targets only NVIDIA GPUs at the moment
● Code needs to be compiled with CUDA support
● No special settings in input file needed
● Only efficient on HPC GPUs (need double 

precision operations!)
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Features on GPUs
● Most efficient: time propagations for large 

systems
● Also working: ground state → use RMMDIIS 

eigensolver
● Some features do not work/are inefficient (e.g., 

spin-orbit coupling, DFT+U, hybrid functionals)
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Guidelines for efficiency
● One process per GPU on each node
● Many states: min. 16-32 states per process
● Large grids: enough points needed to saturate 

GPUs
● Domain parallelization introduces 

communication overhead (GPU ↔ CPU)
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How to get started
● Compile code with CUDA support
● Run on a system with NVIDIA GPUs
● At MPCDF: use octopus-gpu module
● Compare timings to CPU run
● In case of issues or inefficiencies, let the 

developers know!



Octopus on HPC systems: parallelization and GPUs

Why use GPUs?
● For suitable setups, using GPUs can be 10 times 

faster than on CPUs (on same number of nodes)
– Faster time to solution
– More efficient

● Large GPU resources now and in future
● Try it out!
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Tutorials

1) Using MPCDF systems
2) Slurm usage
3) Parallelization in octopus
4) Scaling
5) Octopus on GPUs
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Backup slides
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Comparison on cobra: CPU vs. GPU

> 4x

64 GPUs 2560 cores

TCO of cobra nodes:
   GPU ~ 2.8 CPU

→ cost-efficient on 
GPUs!
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Scaling on GPU nodes
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● Real-space grid for FD
● Complicated shape 

possible, e.g. molecules
● Cache-aware mapping to 

1D array
● 1D data layout: 2 blocks

– Interior points
– Boundary/ghost points

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373
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Orbital 1

Mesh index

Orbital 2

...1 2 3

...1 2 3

...1 2 3

...1 2 3

Orbital 3

Orbital 4

Unpacked layout

M
es

h 
in

de
x

Packed layout
Orbital index

1 1 1 1

2 2 2 2

3 3 3 3

...

Data layout II: batches
● Aggregate several 

orbitals into one 
batch

● Operations done 
over batches

● 2 layouts:
– Unpacked
– Packed → 

vectorization, GPUs
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Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions before: ● Transitions now:
CPU unpacked

CPU packed GPU packed

→ always involves transposition

CPU unpacked

CPU packed GPU packed

→ simple copy to GPU
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