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Optimization strategy
● Optimize in serial before going parallel!
● Otherwise: scaling inefficient code
● Iterative procedure

– Profile: where is the bottleneck?
– Improve that bottleneck



Profiling
● Measure specified performance metrics for different parts of 

the code
● Metrics: time spent, GFLOPS, memory, …
● Code parts: functions, loops, source lines, …
● Critical step: understand code behavior to focus optimization 

efforts
● “Premature optimization is the root of all evil” (Donald Knuth)
● Pareto rule: “80% of the gains generally come from focusing 

on 20% of the code”



Profiling tools
● First step: internal profiling

→ time spent in functions
● likwid: FLOPS, memory bandwidth, … for functions
● Intel vtune: time and other metrics on loop level
● Advisor: roof line metrics on loop level
● Nvidia Nsight systems: GPU profiling, data 

transfers, kernel launches



Internal profiling: usage
● Set input variable ProfilingMode = prof_time
● Output: profiling/time.000000
● Contains timings for regions in the code
● Self-time and cumulative time (ordered by self-time)
● With ProfilingAllNodes = yes: one file per MPI 

process
● Profiling can be different on different processes due 

to load imbalance



Example output
                                                                    CUMULATIVE TIME                                 |                         SELF TIME
                                          --------------------------------------------------------------------------|-------------------------------------------------------------
TAG                           NUM_CALLS      TOTAL_TIME   TIME_PER_CALL        MIN_TIME    MFLOPS  MBYTES/S   %TIME |       TOTAL_TIME   TIME_PER_CALL    MFLOPS  MBYTES/S   %TIME
====================================================================================================================|=============================================================
zNL_OPERATOR_BATCH                 4060        3.258858        0.000803        0.000209    2591.9       0.0    35.3 |         3.258858        0.000803    2591.9       0.0    35.3
PS_FILTER                             4        1.889388        0.472347        0.327342       0.0       0.0    20.5 |         1.889388        0.472347       0.0       0.0    20.5
SG_PCONV                            101        0.954465        0.009450        0.009319       0.0       0.0    10.3 |         0.949822        0.009404       0.0       0.0    10.3
zVLPSI                             2030        0.619451        0.000305        0.000166     563.1    1223.1     6.7 |         0.619451        0.000305     563.1    1223.1     6.7
zSET_BC                            2030        0.365790        0.000180        0.000098       0.0       0.0     4.0 |         0.365790        0.000180       0.0       0.0     4.0
MESH_INIT                             3        0.357447        0.119149        0.000002       0.0       0.0     3.9 |         0.344014        0.114671       0.0       0.0     3.7
zGHOST_UPDATE_START                2030        0.264002        0.000130        0.000069       0.0       0.0     2.9 |         0.259105        0.000128       0.0       0.0     2.8
CALC_DENSITY                        505        0.222086        0.000440        0.000232       0.0       0.0     2.4 |         0.222086        0.000440       0.0       0.0     2.4
ELECTRONS_CONSTRUCTOR                 1        0.383280        0.383280        0.383280       0.0       0.0     4.2 |         0.208536        0.208536       0.0       0.0     2.3
zPROJ_MAT_SCATTER                 12180        0.159651        0.000013        0.000002      73.0       0.0     1.7 |         0.159651        0.000013      73.0       0.0     1.7
COMPLETE_RUN                          1        9.226912        9.226912        9.226912    1051.6      84.5   100.0 |         0.144164        0.144164       0.0       0.0     1.6
HAMILTONIAN_ELEC_INIT                 1        2.000087        2.000087        2.000087       0.0       0.0    21.7 |         0.110699        0.110699       0.0       0.0     1.2
zVNLPSI_MAT_BRA                    2030        0.107823        0.000053        0.000034    1009.6       0.0     1.2 |         0.107823        0.000053    1009.6       0.0     1.2
LIBXC                               202        0.073882        0.000366        0.000228       0.0       0.0     0.8 |         0.073882        0.000366       0.0       0.0     0.8
zVNLPSI_MAT_REDUCE                 2030        0.065831        0.000032        0.000004       0.0       0.0     0.7 |         0.065831        0.000032       0.0       0.0     0.7
BLAS_AXPY_4                        3000        0.064741        0.000022        0.000008    5971.5       0.0     0.7 |         0.064741        0.000022    5971.5       0.0     0.7
zGHOST_UPDATE_WAIT                 2030        0.043132        0.000021        0.000011       0.0       0.0     0.5 |         0.043132        0.000021       0.0       0.0     0.5
BATCH_COPY_DATA_TO                 1750        0.042083        0.000024        0.000009       0.0       0.0     0.5 |         0.042083        0.000024       0.0       0.0     0.5
zVNLPSI_MAT_KET                    2030        0.248724        0.000123        0.000058     327.8       0.0     2.7 |         0.023242        0.000011    3007.3       0.0     0.3
dCUBE_TO_MESH                       101        0.020717        0.000205        0.000191       0.0     443.9     0.2 |         0.020717        0.000205       0.0     443.9     0.2
XC_LOCAL                            101        0.093789        0.000929        0.000875      12.8       0.0     1.0 |         0.019675        0.000195       0.0       0.0     0.2
zHAMILTONIAN                       2030        4.943666        0.002435        0.001494    1817.6     153.3    53.6 |         0.018308        0.000009       0.0       0.0     0.2
EXP_TAYLOR_BATCH                    500        5.000877        0.010002        0.006267    1912.0     149.3    54.2 |         0.016696        0.000033       0.0       0.0     0.2
dMESH_TO_CUBE                       101        0.024494        0.000243        0.000231       0.0     375.4     0.3 |         0.015987        0.000158       0.0     575.2     0.2
POISSON_SOLVE                       101        1.017069        0.010070        0.009940       0.0      18.1    11.0 |         0.015378        0.000152       0.0       0.0     0.2



Internal profiling: implementation
● Define object and call profiling_in/profiling_out:

– use profiling_oct_m
– …
– subroutine …
– type(profile_t), save :: exp_prof
– call profiling_in(exp_prof, "EXPONENTIAL")
– …
– call profiling_out(exp_prof)
– end subroutine



More internal profiling
● More options for ProfilingMode

– prof_io: count number of file open/close operations
– prof_mem: summary on memory usage and largest 

array
– prof_mem_full: log of every allocation and 

deallocation



Profiling: tips & tricks
● Internal profiling (prof_time) can be always 

enabled
● Negligible overhead
● Data available for past runs → quick check 

possible
● For TD runs: TIME_STEP for full time steps
● For GS runs: SCF_CYCLE for full iterations



Profiling on GPUs
● Compile with CUDA and NVTX support:

./configure --enable-cuda --enable-nvtx …
● Enable profiling (ProfilingMode = prof_time)
● Install Nsight systems (or use nsight_systems/2021 module on 

MPCDF systems)
● Run Nsight:

– nsys profile -t cuda,nvtx,mpi srun -n 2 octopus
● Will create reportXX.qdrep
● Open with GUI (nsys-ui) – either with X forwarding or on local PC
● Analyze timeline (NVTX regions, kernel launches, data transfers)



Profiling for parallel runs
● Default: profiling written by rank 0
● Possible problem: load imbalance

– Different timings on different ranks
– Might lead to wrong conclusions

● Set ProfilingAllNodes = yes
– Writes out profiling for all ranks
– Comparison possible
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Efficient code
● For implementing a feature:

– Use operations already implemented for batches or 
mesh functions (e.g. scaling, integral, …; see later)

– Use blas/lapack functions
– Implement loops yourself



Efficient loops
● Most important: memory access pattern
● Memory access: linear → best use of caches
● Important:

– Layout of array in memory
– Order of loops



Memory access
● Memory much slower 

than CPU → often a 
bottleneck

● Mitigation: hierarchy
● Cache is filled in small 

chunks
● Most performance:

– Linear access
– Reuse memory

Core

Main memory

L3 Cache

L2 Cache

L1 Cache
Speed SizeRegisters



Memory layout of arrays
● C: row-major layout
● Fortran: column-major 

layout
– First index changes 

fastest
– Last index changes most 

slowly
– Linear access: innermost 

loop over first index!

Row-major order
a

11
a

12
a

13

a21 a22 a23

a31 a32 a33

Column-major order
a11 a12 a13

a
21

a
22

a
23

a31 a32 a33

Image source: Wikipedia, Author: Cmglee



Example code: phase
● First dimension: ii

– Fastest index
– Inner loop

● Second dimension: ip
– Slowest index
– Outer loop

do ip = 1, min(mesh%np, np)

  phase = this%phase(ip, psib%ik)

  do ii = 1, psib%nst_linear

    psib%zff_pack(ii, ip) = phase * &

                 src_%zff_pack(ii, ip)

  end do

end do



BLAS/LAPACK functions
● Interfaces in

– math/lalg_basic.F90
● e.g. lalg_axpy, lalg_nrm2, lalg_gemm

– math/lalg_adv.F90
● e.g. lalg_cholesky, lalg_eigensolve, lalg_determinant

– For different dimensions of arrays
● Use efficient BLAS/LAPACK implementation

– MKL, OpenBLAS



BLAS example
● Example function: lalg_axpy
● Compute y = a*x + y
● Example in CG eigensolver:

– psi, cg: 2D arrays (mesh%np_part, st%d%dim)
– call lalg_axpy(mesh%np, st%d%dim, -norma, psi, cg)
– Compute cg = -norma*psi + cg
– Corresponds to orthogonalization



High-level operations
● Most efficient: use batch operations

– Basic operations implemented also on GPUs
– Use vectorization on CPUs

● Next level: mesh functions
● More details later
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Parallelization strategies

Vectorization

Kohn Sham states

Real space domains

OpenMP

M
P
I

CUDA

K points / Spin

CPU GPU



Guidelines
● K points: min. 1 k point per process
● States: min. 4-8 states per process
● K points and states should be balanced
● States: most efficient is multiple of StatesBlockSize 

(number of states in a batch)
– CPUs: 4
– GPUs: 32

● Domains: ratio ghost/local points <25%



Parallelization in the code
● Distribution of k points:

ik from st%d%kpt%start to st%d%kpt%end
● Distribution of states:

ist from st%st_start to st%st_end
● Wavefunctions: in groups of states (batches)

ib from st%group%block_start to st%group%block_end
● Access certain batch: st%group%psib(ik, ib) 
● Domains:

– Local number of points: np, np_part (includes ghost + boundary points)
– Global number of points: np_global, np_part_global



Loop over k points and states
● Example: subroutine states_elec_set_zero

do iqn = st%d%kpt%start, st%d%kpt%end
  do ib = st%group%block_start, st%group%block_end
    call batch_set_zero(st%group%psib(ib, iqn))
  end do
end do

● Loops over local part of states → enables 
parallelization



Loop over domains
● Should be rarely needed
● Rather use BLAS/LAPACK or batch functions
● Simply loop from 1 to mesh%np
● Points from np to np_part: ghost and boundary 

points, should normally not be touched
● For certain operations, reduction necessary (e.g. 

integrals, sums, …) → see mesh functions



Hints
● Take parallelization into account from the 

beginning!
● Easier than later modification
● Most important:

– Distribution of data
– Work on locally available data (→ correct loop 

boundaries)
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Scope
● We want to use Octopus efficiently:

– calculation should be fast

– code should not use too much memory

– minimal IO and communications

– use resources efficiently: multi cores, GPUs, …

– simple, maintainable code



A non trivial task
● Mesh can be non uniform, e.g., curvilinear mesh

– Affects weights for finite differences, integrals, dot products, ...

A. Castro et al., phys. stat. sol. (b) 243, 11 (2006)
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● Mesh can be non uniform, e.g., curvilinear mesh

– Affects weights for finite differences, integrals, dot products, ...

● Space can be generated along non-orthogonal 
lattice vectors
– Affects derivatives and observables, e.g. forces, current, ...r 

threads/tasks

Natan et al., PRB 78, 075109 (2008)



A non trivial task
● Mesh can be non uniform, e.g., curvilinear mesh

– Affects weights for finite differences, integrals, dot products, ...

● Space can be generated along non-orthogonal lattice vectors
– Affects derivatives and observables, e.g. forces, current, ...

● Data can be on CPU or GPU
– Copies might be needed to access data

● Support of OpenMP/MPI
– Implies communications like reductions over threads/tasks

● Multiple dimensions (1D, 2D, 3D, 4D, ...)



What we should not do !
Taken from src/hamiltonian/kb_projector_inc.F90

    do idim = 1, dim
      do ic = 1, kb_p%n_c
        do is = 1, ns
          uvpsi(idim, ic) = uvpsi(idim, ic) + psi(is, idim)*kb_p%p(is, ic)
        end do
      end do
    end do

  

must



What we should not do !
Taken from src/hamiltonian/kb_projector_inc.F90

    do idim = 1, dim
      do ic = 1, kb_p%n_c
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“mesh functions”



What we should not do !
Taken from src/hamiltonian/kb_projector_inc.F90

    do idim = 1, dim
      do ic = 1, kb_p%n_c
        do is = 1, ns
          uvpsi(idim, ic) = uvpsi(idim, ic) + psi(is, idim)*kb_p%p(is, ic)
        end do
      end do
    end do

What do we compute here:
 - Compute a series of dot product here for each projector (labeled by ic) resolved per spinor dimension (idim)
  
What is bad here:
 - No BLAS call
 - No OpenMP support
 - No GPU support
 - Code specific to uniform grids. The curvilinear case is not supported

must

Number of grid points

Functions on the grid
“mesh functions”



Where do I find relevant routines?
Different levels:
● In the grid folder: how to manipulate individual mesh 

functions (or batches, see later)
– Dot product, integral, norm, linear algebra like BLAS axpy,...

● In the states folder: manipulate all states at once
– Randomization of states, orthogonalization,...

● In the electrons folder: same as states, but needs to 
know the Hamiltonian
– Subspace diagonalization



Wavefunctions and data in Octopus
● Two possible cases:

– “mesh functions”: one dimensional arrays

– “batches”: collections of mesh functions packed 
   together in memory



Mesh functions
● Contains weight of the function f evaluated at the grid point ri :    

array(i)=f(ri)
● The grid is divided in real-space domains

Locally, we have np points

We also have ghost points: 
From other domains
We also have boundary points:
For describing boundaries of the simulation box



● Complicated shape 
possible, e.g. molecules

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373

Data layout



● Complicated shape 
possible, e.g. molecules

● Cache-aware mapping to 
1D array

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373

Data layout



● Complicated shape 
possible, e.g. molecules

● Cache-aware mapping to 
1D array

● 1D data layout: 2 blocks
– Interior points
– Boundary/ghost points

Interior Boundary

Interior

Boundary

Boundary

B
ou

nd
ar

y B
oundary

Data layout



Mesh functions
● Contains weight of the function f evaluated at the grid point ri  

:    array(i)=f(ri)
● The grid is divided in real-space domains
● Locally, we have np points

● We also have ghost points: 
– From other domains

● We also have boundary points:
– Describing boundaries of the simulation box

Needed for 
derivatives



Mesh functions

● If we need to perform derivatives, we have 
locally np_part points

● Usually data stored from np+1 to np_part don’t 
need to be manipulated: done automatically 
when performing derivatives



np versus np_part
The question to ask yourself: 
do I need to compute derivatives ?
– If no, the array should be of size np
– Else, use np_part

Important for not using too much memory

Reduced communication and transfers from/to GPU

Much fast, less operations are performed

Example: In bulk Si, primitive cell, we have
– np=2744
– np_part=9192



How to manipulate mesh functions?
● Let’s assume that you know a mesh function f on the grid 

(and its friends g, h, …)
● Octopus provide basic “safe” operations

src/grid/mesh_function.F90
e.g. X(mf_integrate), X(mf_dotp), X(mf_nrm2)
 

● Safe for uniform and non-uniform meshes
● Support OpenMP and MPI 
● Internally use BLAS when possible



How to manipulate mesh functions?
● Let’s assume that you know a mesh function f on the 

grid (and its friends g, h, …)
● Octopus provide access to BLAS/LAPACK calls

src/math/lalg_basic.F90 – src/math/lalg_adv.F90
e.g. lalg_axpy, lalg_scal, …

Must only be used for local operators, not for global 
operations (dot products, norms, integrals, …).

 



How to get a mesh function?
If you know the states_elec_t object: 

call states_elec_get_state(st, mesh, ist, ik, psi)

st: states_elec_t object

mesh: mesh_t object

ist: state index

ik: k-point/spin index

psi(1:mesh%np, 1:st%dim): a wavefunction (or Pauli spinor)

Returns only np points; np+1 to np_part are not set



How to get a mesh function?
If you know a wfs_elec_t object (or batch_t): 

call batch_get_state(psib,  ist, np, psi)

psib: batch_t or wfs_elec_t object

ist: index of the state in the batch. Not the state index ! Goes from 1 to psib%nst.

np: number of points requested. Usually mesh%np, sometimes mesh%np_part.

psi(1:mesh%np, 1:st%dim): a wavefunction (or Pauli spinor)

The batch caries the information of the state/k-point indices



How to set a mesh function?
Once you have finished manipulating the mesh function:

● batch_set_state
● states_elec_set_state

Warning: every call to get_state/set_state implies a 
copy/transfer. 
Needs to be avoided → see batch manipulation



Example 1: Gram-Schimdt 
orthonormalization

The algorithm (from wikipedia):

Where

Basic operations: dot product, norm, y = a*x+y



Example 1: Gram-Schimdt 
orthonormalization

Taken from src/states/states_elec_calc_inc.F90
       call states_elec_get_state(st, mesh, ist, ik, psii)

        ! calculate the projections first with the same vector
        do jst = 1, ist - 1
          call states_elec_get_state(st, mesh, jst, ik, psij)
          aa(jst) = X(mf_dotp)(mesh, st%d%dim, psij, psii, reduce = .false.)
        end do

        if (mesh%parallel_in_domains .and. ist > 1) call mesh%allreduce(aa, dim = ist - 1)
        ! then subtract the projections
        do jst = 1, ist - 1
          call states_elec_get_state(st, mesh, jst, ik, psij)
          do idim = 1, st%d%dim
            call lalg_axpy(mesh%np, -aa(jst), psij(:, idim), psii(:, idim))
          end do
        end do

        ! renormalize
        cc = TOFLOAT(X(mf_dotp)(mesh, st%d%dim, psii, psii))

        call lalg_scal(mesh%np, st%d%dim, M_ONE/sqrt(cc), psii)

        call states_elec_set_state(st, mesh, ist, ik, psii)



Example 2: Laplacian of a Gaussian
Let’s create a Gaussian centered on the origin

do ip = 1, this%mesh%np
    ff(ip) = bb*exp(-aa*sum(this%mesh%x(ip, :)**2)) + cc
  end do

Computing the Laplacian is done simply by calling

call dderivatives_perform(der%lapl, der, ff,op_ff)

Different derivative routines (gradient, Laplacien, divergence, curl, partial) are defined in 
src/grid/derivatives.F90.

The array ff is of size np_part, as we need to perform derivatives
Ghost points and boundary points are automatically set.

It is possible to ask for not setting them. This must be done with great care !



Example 3: Solving a Poisson 
equation

If we want to compute a Poisson equation

call dpoisson_solve(psolver, pot, dens)

Internally takes care of doing many operations, GPU 
transferts, MPI distribution, mesh to cube, cube to 
mesh,….
One should never call FFTs directly!



Quick summary
● To perform local operations: 

lalg_basic_m/lalg_adv_m modules (BLAS/Lapack)
● To perform derivatives: derivatives_m 
● To compute global quantities: mesh_function_m
● To solver a Poisson equation: poisson_solve
● To get/set states: states_elec_XX_state and 

batch_XX_state routines



Problem with the previous approach
● XX_get_state routines imply copies and transfer  of memory: 

very expensive !
● The same for set_state calls

● We want to remove these copies

● Does not work on GPUs

● Idea: manipulate the information directly where it is stored
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Higher level: batches
● Collection of mesh functions packed together
● Operations on batches are implemented on CPU 

and on GPU
● Using batches avoids transfers to/from the GPU
● Preferred way of manipulating wavefunctions



Orbital 1

Mesh index

Orbital 2

...1 2 3

...1 2 3

...1 2 3

...1 2 3

Orbital 3

Orbital 4

Unpacked layout

M
es

h 
in

de
x

Packed layout
Orbital index

1 1 1 1

2 2 2 2

3 3 3 3

...

Data layout II: batches
● Aggregate several 

orbitals into one 
batch

● Operations done 
over batches

● 2 layouts:
– Unpacked
– Packed → 

vectorization, GPUs



Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed



Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions
CPU unpacked

CPU packed GPU packed

simple copy to GPU

transposition



Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions
CPU unpacked

CPU packed GPU packed

simple copy to GPU

transposition

Default nowadays



How to manipulate batches?
● Not directly (most of the time)
● Octopus provides dedicated routines

– batch_ops_m: operations on batches which do not require 
knowing the mesh and parallelization (no reduction), local 
operations
Batch equivalent of BLAS/Lapack calls (axpy, scal,...)

– mesh_batch_m: global operations like dot products
Batch equivalent of mesh_function_m routines

– derivatives_m: batch versions of the derivative routines



Example: Gram-Schmidt 
orthonormalization with batches

Adapted from mesh_batch_inc.F90.

Orthonormalizes phib (mesh function) agains all the states in the array of batches 
psib(:)

    do ist = 1, nst
      call X(mesh_batch_dotp_vector)(mesh, psib(ist), phib, ss(1:phib%nst,ist), reduce = .false.)
    end do

    if (mesh%parallel_in_domains) call mesh%allreduce(ss, dim = (/phib%nst, nst/))

    do ist = 1, nst
      call batch_axpy(mesh%np, -ss(1:phib%nst,ist), psib(ist), phib, a_full = .false.)
    end do

    call X(mesh_batch_dotp_vector)(mesh, phib, phib, nrm2)
    call batch_scal(mesh%np, M_ONE/sqrt(TOFLOAT(nrm2)), phib, a_full =.false.)

No get_state/set_state routine. All the data are manipulated in-place.



Summary
● Profiling: understand & optimize code
● Program with parallelization in mind
● Preferred usages:

– Batches + operations
– Mesh functions + operations



Tutorials

1) Profiling
2) Profiling on GPUs
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