
Parallelization and 
performance: how to make 
the Octopus swim fast

Nicolas Tancogne-Dejean (MPSD)

Sebastian Ohlmann (MPCDF)

Octopus advanced course, 23.9.2021



Outline
● Optimization strategy, profiling
● Techniques for efficient programming
● Parallelization
● Mesh functions
● Batches



Outline
● Optimization strategy, profiling
● Techniques for efficient programming
● Parallelization
● Mesh functions
● Batches



Optimization strategy
● Optimize in serial before going parallel!
● Otherwise: scaling inefficient code
● Iterative procedure

– Profile: where is the bottleneck?
– Improve that bottleneck



Profiling
● Measure specified performance metrics for different parts of 

the code
● Metrics: time spent, GFLOPS, memory, …
● Code parts: functions, loops, source lines, …
● Critical step: understand code behavior to focus optimization 

efforts
● “Premature optimization is the root of all evil” (Donald Knuth)
● Pareto rule: “80% of the gains generally come from focusing 

on 20% of the code”



Profiling tools
● First step: internal profiling

→ time spent in functions
● likwid: FLOPS, memory bandwidth, … for functions
● Intel vtune: time and other metrics on loop level
● Advisor: roof line metrics on loop level
● Nvidia Nsight systems: GPU profiling, data 

transfers, kernel launches



Internal profiling: usage
● Set input variable ProfilingMode = prof_time
● Output: profiling/time.000000
● Contains timings for regions in the code
● Self-time and cumulative time (ordered by self-time)
● With ProfilingAllNodes = yes: one file per MPI 

process
● Profiling can be different on different processes due 

to load imbalance



Example output
                                                                    CUMULATIVE TIME                                 |                         SELF TIME
                                          --------------------------------------------------------------------------|-------------------------------------------------------------
TAG                           NUM_CALLS      TOTAL_TIME   TIME_PER_CALL        MIN_TIME    MFLOPS  MBYTES/S   %TIME |       TOTAL_TIME   TIME_PER_CALL    MFLOPS  MBYTES/S   %TIME
====================================================================================================================|=============================================================
zNL_OPERATOR_BATCH                 4060        3.258858        0.000803        0.000209    2591.9       0.0    35.3 |         3.258858        0.000803    2591.9       0.0    35.3
PS_FILTER                             4        1.889388        0.472347        0.327342       0.0       0.0    20.5 |         1.889388        0.472347       0.0       0.0    20.5
SG_PCONV                            101        0.954465        0.009450        0.009319       0.0       0.0    10.3 |         0.949822        0.009404       0.0       0.0    10.3
zVLPSI                             2030        0.619451        0.000305        0.000166     563.1    1223.1     6.7 |         0.619451        0.000305     563.1    1223.1     6.7
zSET_BC                            2030        0.365790        0.000180        0.000098       0.0       0.0     4.0 |         0.365790        0.000180       0.0       0.0     4.0
MESH_INIT                             3        0.357447        0.119149        0.000002       0.0       0.0     3.9 |         0.344014        0.114671       0.0       0.0     3.7
zGHOST_UPDATE_START                2030        0.264002        0.000130        0.000069       0.0       0.0     2.9 |         0.259105        0.000128       0.0       0.0     2.8
CALC_DENSITY                        505        0.222086        0.000440        0.000232       0.0       0.0     2.4 |         0.222086        0.000440       0.0       0.0     2.4
ELECTRONS_CONSTRUCTOR                 1        0.383280        0.383280        0.383280       0.0       0.0     4.2 |         0.208536        0.208536       0.0       0.0     2.3
zPROJ_MAT_SCATTER                 12180        0.159651        0.000013        0.000002      73.0       0.0     1.7 |         0.159651        0.000013      73.0       0.0     1.7
COMPLETE_RUN                          1        9.226912        9.226912        9.226912    1051.6      84.5   100.0 |         0.144164        0.144164       0.0       0.0     1.6
HAMILTONIAN_ELEC_INIT                 1        2.000087        2.000087        2.000087       0.0       0.0    21.7 |         0.110699        0.110699       0.0       0.0     1.2
zVNLPSI_MAT_BRA                    2030        0.107823        0.000053        0.000034    1009.6       0.0     1.2 |         0.107823        0.000053    1009.6       0.0     1.2
LIBXC                               202        0.073882        0.000366        0.000228       0.0       0.0     0.8 |         0.073882        0.000366       0.0       0.0     0.8
zVNLPSI_MAT_REDUCE                 2030        0.065831        0.000032        0.000004       0.0       0.0     0.7 |         0.065831        0.000032       0.0       0.0     0.7
BLAS_AXPY_4                        3000        0.064741        0.000022        0.000008    5971.5       0.0     0.7 |         0.064741        0.000022    5971.5       0.0     0.7
zGHOST_UPDATE_WAIT                 2030        0.043132        0.000021        0.000011       0.0       0.0     0.5 |         0.043132        0.000021       0.0       0.0     0.5
BATCH_COPY_DATA_TO                 1750        0.042083        0.000024        0.000009       0.0       0.0     0.5 |         0.042083        0.000024       0.0       0.0     0.5
zVNLPSI_MAT_KET                    2030        0.248724        0.000123        0.000058     327.8       0.0     2.7 |         0.023242        0.000011    3007.3       0.0     0.3
dCUBE_TO_MESH                       101        0.020717        0.000205        0.000191       0.0     443.9     0.2 |         0.020717        0.000205       0.0     443.9     0.2
XC_LOCAL                            101        0.093789        0.000929        0.000875      12.8       0.0     1.0 |         0.019675        0.000195       0.0       0.0     0.2
zHAMILTONIAN                       2030        4.943666        0.002435        0.001494    1817.6     153.3    53.6 |         0.018308        0.000009       0.0       0.0     0.2
EXP_TAYLOR_BATCH                    500        5.000877        0.010002        0.006267    1912.0     149.3    54.2 |         0.016696        0.000033       0.0       0.0     0.2
dMESH_TO_CUBE                       101        0.024494        0.000243        0.000231       0.0     375.4     0.3 |         0.015987        0.000158       0.0     575.2     0.2
POISSON_SOLVE                       101        1.017069        0.010070        0.009940       0.0      18.1    11.0 |         0.015378        0.000152       0.0       0.0     0.2



Internal profiling: implementation
● Define object and call profiling_in/profiling_out:

– use profiling_oct_m
– …
– subroutine …
– type(profile_t), save :: exp_prof
– call profiling_in(exp_prof, "EXPONENTIAL")
– …
– call profiling_out(exp_prof)
– end subroutine



More internal profiling
● More options for ProfilingMode

– prof_io: count number of file open/close operations
– prof_mem: summary on memory usage and largest 

array
– prof_mem_full: log of every allocation and 

deallocation



Profiling: tips & tricks
● Internal profiling (prof_time) can be always 

enabled
● Negligible overhead
● Data available for past runs → quick check 

possible
● For TD runs: TIME_STEP for full time steps
● For GS runs: SCF_CYCLE for full iterations



Profiling on GPUs
● Compile with CUDA and NVTX support:

./configure --enable-cuda --enable-nvtx …
● Enable profiling (ProfilingMode = prof_time)
● Install Nsight systems (or use nsight_systems/2021 module on 

MPCDF systems)
● Run Nsight:

– nsys profile -t cuda,nvtx,mpi srun -n 2 octopus
● Will create reportXX.qdrep
● Open with GUI (nsys-ui) – either with X forwarding or on local PC
● Analyze timeline (NVTX regions, kernel launches, data transfers)



Profiling for parallel runs
● Default: profiling written by rank 0
● Possible problem: load imbalance

– Different timings on different ranks
– Might lead to wrong conclusions

● Set ProfilingAllNodes = yes
– Writes out profiling for all ranks
– Comparison possible



Outline
● Optimization strategy, profiling
● Techniques for efficient programming
● Parallelization
● Mesh functions
● Batches



Efficient code
● For implementing a feature:

– Use operations already implemented for batches or 
mesh functions (e.g. scaling, integral, …; see later)

– Use blas/lapack functions
– Implement loops yourself



Efficient loops
● Most important: memory access pattern
● Memory access: linear → best use of caches
● Important:

– Layout of array in memory
– Order of loops



Memory access
● Memory much slower 

than CPU → often a 
bottleneck

● Mitigation: hierarchy
● Cache is filled in small 

chunks
● Most performance:

– Linear access
– Reuse memory

Core

Main memory

L3 Cache

L2 Cache

L1 Cache
Speed SizeRegisters



Memory layout of arrays
● C: row-major layout
● Fortran: column-major 

layout
– First index changes 

fastest
– Last index changes most 

slowly
– Linear access: innermost 

loop over first index!

Row-major order
a

11
a

12
a

13

a21 a22 a23

a31 a32 a33

Column-major order
a11 a12 a13

a
21

a
22

a
23

a31 a32 a33

Image source: Wikipedia, Author: Cmglee



Example code: phase
● First dimension: ii

– Fastest index
– Inner loop

● Second dimension: ip
– Slowest index
– Outer loop

do ip = 1, min(mesh%np, np)

  phase = this%phase(ip, psib%ik)

  do ii = 1, psib%nst_linear

    psib%zff_pack(ii, ip) = phase * &

                 src_%zff_pack(ii, ip)

  end do

end do



BLAS/LAPACK functions
● Interfaces in

– math/lalg_basic.F90
● e.g. lalg_axpy, lalg_nrm2, lalg_gemm

– math/lalg_adv.F90
● e.g. lalg_cholesky, lalg_eigensolve, lalg_determinant

– For different dimensions of arrays
● Use efficient BLAS/LAPACK implementation

– MKL, OpenBLAS



BLAS example
● Example function: lalg_axpy
● Compute y = a*x + y
● Example in CG eigensolver:

– psi, cg: 2D arrays (mesh%np_part, st%d%dim)
– call lalg_axpy(mesh%np, st%d%dim, -norma, psi, cg)
– Compute cg = -norma*psi + cg
– Corresponds to orthogonalization



High-level operations
● Most efficient: use batch operations

– Basic operations implemented also on GPUs
– Use vectorization on CPUs

● Next level: mesh functions
● More details later



Outline
● Optimization strategy, profiling
● Techniques for efficient programming
● Parallelization
● Mesh functions
● Batches



Parallelization strategies

Vectorization

Kohn Sham states

Real space domains

OpenMP

M
P
I

CUDA

K points / Spin

CPU GPU



Guidelines
● K points: min. 1 k point per process
● States: min. 4-8 states per process
● K points and states should be balanced
● States: most efficient is multiple of StatesBlockSize 

(number of states in a batch)
– CPUs: 4
– GPUs: 32

● Domains: ratio ghost/local points <25%



Parallelization in the code
● Distribution of k points:

ik from st%d%kpt%start to st%d%kpt%end
● Distribution of states:

ist from st%st_start to st%st_end
● Wavefunctions: in groups of states (batches)

ib from st%group%block_start to st%group%block_end
● Access certain batch: st%group%psib(ik, ib) 
● Domains:

– Local number of points: np, np_part (includes ghost + boundary points)
– Global number of points: np_global, np_part_global



Loop over k points and states
● Example: subroutine states_elec_set_zero

do iqn = st%d%kpt%start, st%d%kpt%end
  do ib = st%group%block_start, st%group%block_end
    call batch_set_zero(st%group%psib(ib, iqn))
  end do
end do

● Loops over local part of states → enables 
parallelization



Loop over domains
● Should be rarely needed
● Rather use BLAS/LAPACK or batch functions
● Simply loop from 1 to mesh%np
● Points from np to np_part: ghost and boundary 

points, should normally not be touched
● For certain operations, reduction necessary (e.g. 

integrals, sums, …) → see mesh functions



Hints
● Take parallelization into account from the 

beginning!
● Easier than later modification
● Most important:

– Distribution of data
– Work on locally available data (→ correct loop 

boundaries)



Outline
● Optimization strategy, profiling
● Techniques for efficient programming
● Parallelization
● Mesh functions
● Batches



Scope
● We want to use Octopus efficiently:

– calculation should be fast

– code should not use too much memory

– minimal IO and communications

– use resources efficiently: multi cores, GPUs, …

– simple, maintainable code



A non trivial task
● Mesh can be non uniform, e.g., curvilinear mesh

– Affects weights for finite differences, integrals, dot products, ...

A. Castro et al., phys. stat. sol. (b) 243, 11 (2006)



A non trivial task
● Mesh can be non uniform, e.g., curvilinear mesh

– Affects weights for finite differences, integrals, dot products, ...

● Space can be generated along non-orthogonal 
lattice vectors
– Affects derivatives and observables, e.g. forces, current, ...r 

threads/tasks

Natan et al., PRB 78, 075109 (2008)



A non trivial task
● Mesh can be non uniform, e.g., curvilinear mesh

– Affects weights for finite differences, integrals, dot products, ...

● Space can be generated along non-orthogonal lattice vectors
– Affects derivatives and observables, e.g. forces, current, ...

● Data can be on CPU or GPU
– Copies might be needed to access data

● Support of OpenMP/MPI
– Implies communications like reductions over threads/tasks

● Multiple dimensions (1D, 2D, 3D, 4D, ...)



What we should not do !
Taken from src/hamiltonian/kb_projector_inc.F90

    do idim = 1, dim
      do ic = 1, kb_p%n_c
        do is = 1, ns
          uvpsi(idim, ic) = uvpsi(idim, ic) + psi(is, idim)*kb_p%p(is, ic)
        end do
      end do
    end do

  

must



What we should not do !
Taken from src/hamiltonian/kb_projector_inc.F90

    do idim = 1, dim
      do ic = 1, kb_p%n_c
        do is = 1, ns
          uvpsi(idim, ic) = uvpsi(idim, ic) + psi(is, idim)*kb_p%p(is, ic)
        end do
      end do
    end do

   

must

Number of grid points

Functions on the grid
“mesh functions”



What we should not do !
Taken from src/hamiltonian/kb_projector_inc.F90

    do idim = 1, dim
      do ic = 1, kb_p%n_c
        do is = 1, ns
          uvpsi(idim, ic) = uvpsi(idim, ic) + psi(is, idim)*kb_p%p(is, ic)
        end do
      end do
    end do

What do we compute here:
 - Compute a series of dot product here for each projector (labeled by ic) resolved per spinor dimension (idim)
  
What is bad here:
 - No BLAS call
 - No OpenMP support
 - No GPU support
 - Code specific to uniform grids. The curvilinear case is not supported

must

Number of grid points

Functions on the grid
“mesh functions”



Where do I find relevant routines?
Different levels:
● In the grid folder: how to manipulate individual mesh 

functions (or batches, see later)
– Dot product, integral, norm, linear algebra like BLAS axpy,...

● In the states folder: manipulate all states at once
– Randomization of states, orthogonalization,...

● In the electrons folder: same as states, but needs to 
know the Hamiltonian
– Subspace diagonalization



Wavefunctions and data in Octopus
● Two possible cases:

– “mesh functions”: one dimensional arrays

– “batches”: collections of mesh functions packed 
   together in memory



Mesh functions
● Contains weight of the function f evaluated at the grid point ri :    

array(i)=f(ri)
● The grid is divided in real-space domains

Locally, we have np points

We also have ghost points: 
From other domains
We also have boundary points:
For describing boundaries of the simulation box



● Complicated shape 
possible, e.g. molecules

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373

Data layout



● Complicated shape 
possible, e.g. molecules

● Cache-aware mapping to 
1D array

X. Andrade & A. Aspuru-Guzik, J. Chem. Theory 
Comput. (2013), 9, 10, 4360-4373

Data layout



● Complicated shape 
possible, e.g. molecules

● Cache-aware mapping to 
1D array

● 1D data layout: 2 blocks
– Interior points
– Boundary/ghost points

Interior Boundary

Interior

Boundary

Boundary

B
ou

nd
ar

y B
oundary

Data layout



Mesh functions
● Contains weight of the function f evaluated at the grid point ri  

:    array(i)=f(ri)
● The grid is divided in real-space domains
● Locally, we have np points

● We also have ghost points: 
– From other domains

● We also have boundary points:
– Describing boundaries of the simulation box

Needed for 
derivatives



Mesh functions

● If we need to perform derivatives, we have 
locally np_part points

● Usually data stored from np+1 to np_part don’t 
need to be manipulated: done automatically 
when performing derivatives



np versus np_part
The question to ask yourself: 
do I need to compute derivatives ?
– If no, the array should be of size np
– Else, use np_part

Important for not using too much memory

Reduced communication and transfers from/to GPU

Much fast, less operations are performed

Example: In bulk Si, primitive cell, we have
– np=2744
– np_part=9192



How to manipulate mesh functions?
● Let’s assume that you know a mesh function f on the grid 

(and its friends g, h, …)
● Octopus provide basic “safe” operations

src/grid/mesh_function.F90
e.g. X(mf_integrate), X(mf_dotp), X(mf_nrm2)
 

● Safe for uniform and non-uniform meshes
● Support OpenMP and MPI 
● Internally use BLAS when possible



How to manipulate mesh functions?
● Let’s assume that you know a mesh function f on the 

grid (and its friends g, h, …)
● Octopus provide access to BLAS/LAPACK calls

src/math/lalg_basic.F90 – src/math/lalg_adv.F90
e.g. lalg_axpy, lalg_scal, …

Must only be used for local operators, not for global 
operations (dot products, norms, integrals, …).

 



How to get a mesh function?
If you know the states_elec_t object: 

call states_elec_get_state(st, mesh, ist, ik, psi)

st: states_elec_t object

mesh: mesh_t object

ist: state index

ik: k-point/spin index

psi(1:mesh%np, 1:st%dim): a wavefunction (or Pauli spinor)

Returns only np points; np+1 to np_part are not set



How to get a mesh function?
If you know a wfs_elec_t object (or batch_t): 

call batch_get_state(psib,  ist, np, psi)

psib: batch_t or wfs_elec_t object

ist: index of the state in the batch. Not the state index ! Goes from 1 to psib%nst.

np: number of points requested. Usually mesh%np, sometimes mesh%np_part.

psi(1:mesh%np, 1:st%dim): a wavefunction (or Pauli spinor)

The batch caries the information of the state/k-point indices



How to set a mesh function?
Once you have finished manipulating the mesh function:

● batch_set_state
● states_elec_set_state

Warning: every call to get_state/set_state implies a 
copy/transfer. 
Needs to be avoided → see batch manipulation



Example 1: Gram-Schimdt 
orthonormalization

The algorithm (from wikipedia):

Where

Basic operations: dot product, norm, y = a*x+y



Example 1: Gram-Schimdt 
orthonormalization

Taken from src/states/states_elec_calc_inc.F90
       call states_elec_get_state(st, mesh, ist, ik, psii)

        ! calculate the projections first with the same vector
        do jst = 1, ist - 1
          call states_elec_get_state(st, mesh, jst, ik, psij)
          aa(jst) = X(mf_dotp)(mesh, st%d%dim, psij, psii, reduce = .false.)
        end do

        if (mesh%parallel_in_domains .and. ist > 1) call mesh%allreduce(aa, dim = ist - 1)
        ! then subtract the projections
        do jst = 1, ist - 1
          call states_elec_get_state(st, mesh, jst, ik, psij)
          do idim = 1, st%d%dim
            call lalg_axpy(mesh%np, -aa(jst), psij(:, idim), psii(:, idim))
          end do
        end do

        ! renormalize
        cc = TOFLOAT(X(mf_dotp)(mesh, st%d%dim, psii, psii))

        call lalg_scal(mesh%np, st%d%dim, M_ONE/sqrt(cc), psii)

        call states_elec_set_state(st, mesh, ist, ik, psii)



Example 2: Laplacian of a Gaussian
Let’s create a Gaussian centered on the origin

do ip = 1, this%mesh%np
    ff(ip) = bb*exp(-aa*sum(this%mesh%x(ip, :)**2)) + cc
  end do

Computing the Laplacian is done simply by calling

call dderivatives_perform(der%lapl, der, ff,op_ff)

Different derivative routines (gradient, Laplacien, divergence, curl, partial) are defined in 
src/grid/derivatives.F90.

The array ff is of size np_part, as we need to perform derivatives
Ghost points and boundary points are automatically set.

It is possible to ask for not setting them. This must be done with great care !



Example 3: Solving a Poisson 
equation

If we want to compute a Poisson equation

call dpoisson_solve(psolver, pot, dens)

Internally takes care of doing many operations, GPU 
transferts, MPI distribution, mesh to cube, cube to 
mesh,….
One should never call FFTs directly!



Quick summary
● To perform local operations: 

lalg_basic_m/lalg_adv_m modules (BLAS/Lapack)
● To perform derivatives: derivatives_m 
● To compute global quantities: mesh_function_m
● To solver a Poisson equation: poisson_solve
● To get/set states: states_elec_XX_state and 

batch_XX_state routines



Problem with the previous approach
● XX_get_state routines imply copies and transfer  of memory: 

very expensive !
● The same for set_state calls

● We want to remove these copies

● Does not work on GPUs

● Idea: manipulate the information directly where it is stored



Outline
● Optimization strategy, profiling
● Techniques for efficient programming
● Parallelization
● Mesh functions
● Batches



Higher level: batches
● Collection of mesh functions packed together
● Operations on batches are implemented on CPU 

and on GPU
● Using batches avoids transfers to/from the GPU
● Preferred way of manipulating wavefunctions



Orbital 1

Mesh index

Orbital 2

...1 2 3

...1 2 3

...1 2 3

...1 2 3

Orbital 3

Orbital 4

Unpacked layout

M
es

h 
in

de
x

Packed layout
Orbital index

1 1 1 1

2 2 2 2

3 3 3 3

...

Data layout II: batches
● Aggregate several 

orbitals into one 
batch

● Operations done 
over batches

● 2 layouts:
– Unpacked
– Packed → 

vectorization, GPUs



Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed



Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions
CPU unpacked

CPU packed GPU packed

simple copy to GPU

transposition



Batch handling
● Batch can have 3 states:

CPU unpacked CPU packed GPU packed

● Transitions
CPU unpacked

CPU packed GPU packed

simple copy to GPU

transposition

Default nowadays



How to manipulate batches?
● Not directly (most of the time)
● Octopus provides dedicated routines

– batch_ops_m: operations on batches which do not require 
knowing the mesh and parallelization (no reduction), local 
operations
Batch equivalent of BLAS/Lapack calls (axpy, scal,...)

– mesh_batch_m: global operations like dot products
Batch equivalent of mesh_function_m routines

– derivatives_m: batch versions of the derivative routines



Example: Gram-Schmidt 
orthonormalization with batches

Adapted from mesh_batch_inc.F90.

Orthonormalizes phib (mesh function) agains all the states in the array of batches 
psib(:)

    do ist = 1, nst
      call X(mesh_batch_dotp_vector)(mesh, psib(ist), phib, ss(1:phib%nst,ist), reduce = .false.)
    end do

    if (mesh%parallel_in_domains) call mesh%allreduce(ss, dim = (/phib%nst, nst/))

    do ist = 1, nst
      call batch_axpy(mesh%np, -ss(1:phib%nst,ist), psib(ist), phib, a_full = .false.)
    end do

    call X(mesh_batch_dotp_vector)(mesh, phib, phib, nrm2)
    call batch_scal(mesh%np, M_ONE/sqrt(TOFLOAT(nrm2)), phib, a_full =.false.)

No get_state/set_state routine. All the data are manipulated in-place.



Summary
● Profiling: understand & optimize code
● Program with parallelization in mind
● Preferred usages:

– Batches + operations
– Mesh functions + operations



Tutorials

1) Profiling
2) Profiling on GPUs


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	page41 (1)
	page41 (2)
	page41 (3)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	page59 (1)
	page59 (2)
	page59 (3)
	Slide 64
	Slide 65
	Slide 66
	Slide 67

