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Introduction

Up to now: Octopus on your laptop.
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Introduction

Faster results needed?
Go parallel!
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High Performance Computing

Todays smartphones faster than HPC in the 1980s.

For many years: exponential increase in clock speed

Now: clock speed saturated, move to increased parallelism

Adapting to new hardware is much more complicated

Need to combine different technologies:
MPI, OpenMP, GPU, Vectorization
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Levels of parallelism

Hierarchy in HPC systems:

Cluster: Many compute nodes: MPI
Node: several sockets with CPUs, maybe some GPUs
CPU: several cores: MPI, OpenMP
GPU: many cores: OpenCL, CUDA, etc.
Core: vectorization, pipelining: SIMD

Best performance: exploit all levels
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Parallelization strategies in Octopus

Vectorization

Kohn Sham states

Real space domains

OpenMP

M
P
I

CUDA

K points / Spin

CPU GPU
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Parallelization in k-points

Different k points are mostly independent

Each processor group handles one or several k points

Weakest coupling
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Parallelization in states

Each processor handles a group of states

Efficient for time propagation

Also used for ground state, but stronger coupling (orthogonalization,
subspace diagonalization)
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Parallelization in domains

Each processor handles a region in space

Need to communicate ghost points

Integrals require reduction over all regions

Least efficient parallelization strategy

Watch ratio of inner points to ghost points!
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OpenMP parallelization

Shared-memory approach: threads access the same memory

Octopus: loops over grid can use OpenMP

No ghost points needed

Similar to domain parallelization

Number of local points needs to be large enough

Can be efficient using up to 12 threads

OpenMP threads should be on the same socket
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Vectorization

Modern CPUs: several floating point operations in one instruction

Needed to exploit full performance

In Octopus:

Data structures designed to facilitate vectorization
Hand-crafted kernels for stencil operation
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Controlling the parallelization

Input options:

ParKPoints
ParStates
ParDomains
ParOther (e.g. for Casida)

control number of processors for
each strategy

can also be

auto
no

Default:

TD: auto for all
GS: auto for all except
ParStates
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Choosing the number of processors

Automatic setting is not always the best

Product of processors per strategy = total number of processors

If OpenMP is used: product of OMP threads and MPI tasks = total
number of processors
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MPI framework

Several layers of abstraction:

mpi.F90

mpi grp t

mpi routines for the group

comm.F90

comm allreduce(grp, aa): interface to reductions of various types

multicomm.F90

construct communicators for various strategies

mpi lib.F90

various other MPI routines

In general, if you need more than a simple reduction, consult the core
developers, as good (or bad) MPI strategies can have impact on the code
performance.
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k-point parallelization

k-points are mostly independent.

Often only reduction required. (Brillouin zone summation)

Process local k-points: ik from st%d%kpt%start to st%d%kpt%end

reduction over mpi groups
example: eigenvalue sum

tot = M_ZERO

do ik = st%d%kpt%start , st%d%kpt%end

tot = tot + st%d%kweights(ik) * sum(st%occ(st%st_start:st%st_end , ik) * &

st%eigenval(st%st_start:st%st_end , ik))

end do

if (st%parallel_in_states .or. st%d%kpt%parallel) &

call comm_allreduce(st%st_kpt_mpi_grp , tot)

Octopus: HPC Martin Lüders 15 / 23
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State parallelization

TD-propagation: states are mostly independent.

Only reduction required for total density, energy, etc.

Same method as for k-points.

Each processor owns a subset of states
(group%block start:group%block end)

get node containing a block: group%block node(iblock)

get a copy of a remote block: states elec parallel get block()

more utilities in states elec parallel.F90
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Parallel domain decomposition

Mostly performed under the hood:

ghost exchange is performed unless specified otherwise (optional flag)

in some cases, it is better to postpone the reduction, see e.g.
X(calc expectation value)
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Example: X(calculate expectation values)

...

R_TYPE , intent(out) :: eigen(st%st_start:, st%d%kpt%start :)

...

do ik = st%d%kpt%start , st%d%kpt%end

do ib = st%group%block_start , st%group%block_end

minst = states_elec_block_min(st, ib)

maxst = states_elec_block_max(st, ib)

call st%group%psib(ib, ik)% copy_to(hpsib)

call X(hamiltonian_elec_apply_batch )(hm , namespace , der%mesh , &

st%group%psib(ib , ik), hpsib , terms = terms)

call X(mesh_batch_dotp_vector )(der%mesh , st%group%psib(ib, ik), hpsib , &

eigen(minst:maxst , ik), reduce = .false .)

call hpsib%end()

end do

end do

if (der%mesh%parallel_in_domains) call der%mesh%allreduce (&

eigen(st%st_start:st%st_end , st%d%kpt%start:st%d%kpt%end))

Reduction over states and k-points performed in
states elec eigenvalue sum()

if (st%parallel_in_states .or. st%d%kpt%parallel) &

call comm_allreduce(st%st_kpt_mpi_grp , tot)
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OpenMP

Shared memory parallelization

No communication necessary
Only possible within one node
Take care of private variables, and race conditions!

Independent of MPI parallelization scheme

Perform expensive loops with OpenMP threading, e.g loops over
mesh points

!$omp parallel do simd schedule(static) private(ip)

do pos = 1, mesh%np

ip = mesh_global2local(mesh , recv_indices(pos))

ASSERT(ip /= 0)

do ist = 1, nstl

aa%X(ff_pack )(ist , ip) = recv_buffer(ist , pos)

end do

end do
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GPU arcitecture

Many Streaming Multiprocessors

Limited flexibility

in general GPUs have their own memory

High latency, high throughput

architecture keeps changing (e.g. direct NVLink, etc.)
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GPU programming models

Different strategies and languag extensions to program GPUs

OpenACC: preprocerssor directives

OpenMP: preprocerssor directives

OpenCL: GPU kernels

CUDA: GPU kernels

HIP: GPU kernels

Octopus started with OpenCL and then introduced a CUDA compatibility
layer.
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GPU kernels

Programming model in CUDA and OpenCL:

GPU kernels: small routines, which execute one element of a loop

GPU kernels live in share/opencl

kernels are usually very short routines

All data needs to be transferred to the GPU and back

try to keep data on GPU as long as possible

try to overlap communication and computation
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GPU in Octopus

We try to encapsulate GPU code

Many batch functions work automatically on GPU

Batches have three states:

UNPACKED: CPU, normal storage order (grid index first)
PACKED: CPU, transposed order (state index first)
DEVICE PACKED: GPU, transposed order (state index first)

In most cases, you won’t need to touch any GPU code.

Use batch functions whenever you can!
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